Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6KVS_1)}(2) \setminus P_{f(5TQP_1)}(2)|=21\),
\(|P_{f(5TQP_1)}(2) \setminus P_{f(6KVS_1)}(2)|=147\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1011101111011001100101001100000110010110000110000000011001010111011101001011111010101111011011000110101101001110011100110100010010000111111001001001000001111101111111101001011100011001011001010000101010100110111011101000110010100001011110010101100100011100001010100010001101110100010010100000111111111101111010110
Pair
\(Z_2\)
Length of longest common subsequence
6KVS_1,5TQP_1
168
4
6KVS_1,2XFD_1
164
3
5TQP_1,2XFD_1
238
5
Newick tree
[
5TQP_1:10.10,
[
6KVS_1:82,2XFD_1:82
]:27.10
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1152
}{\log_{20}
1152}-\frac{313}{\log_{20}313})=221.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6KVS_1
5TQP_1
285
192.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]