Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5EGN_1)}(2) \setminus P_{f(4IDT_1)}(2)|=74\),
\(|P_{f(4IDT_1)}(2) \setminus P_{f(5EGN_1)}(2)|=93\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101000110100000101111111011000111101001111000011110001010000110100110010011111011010011111001111111010100100111011100101110111101111100001111111101110100000010111110101011001100110110101011111010001001011011111000110011000111001111010110011010010010010011011111110000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{627
}{\log_{20}
627}-\frac{271}{\log_{20}271})=99.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
5EGN_1
4IDT_1
127
111
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]