Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1ELY_1)}(2) \setminus P_{f(7QZF_1)}(2)|=102\),
\(|P_{f(7QZF_1)}(2) \setminus P_{f(1ELY_1)}(2)|=49\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:01011110001101010111110010100011100010001100111111011100010110001011111101101111010000011000010100100011010110011000011111010000010110110111110101001010010111111010000001101000001101100110101000110101010111110011001011010100100010101001100110100100100001111111010111011110100010100111000101000001101101000110110000011110101101000001101010110010100110011011000100111101001010011110001111001100001111110010000000000100101110110110111100000110010111110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{765
}{\log_{20}
765}-\frac{316}{\log_{20}316})=122.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1ELY_1
7QZF_1
157
132
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]