Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5ABA_1)}(2) \setminus P_{f(6TBH_1)}(2)|=43\),
\(|P_{f(6TBH_1)}(2) \setminus P_{f(5ABA_1)}(2)|=162\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:000110000001001101111001010010000011100110011000110111000111100101111000000100110001000000000111110011010101010010000010001111001101100000100001000001111000111011010000101110001010101011000000000100010100011110000111000
Pair
\(Z_2\)
Length of longest common subsequence
5ABA_1,6TBH_1
205
3
5ABA_1,1KJQ_1
183
4
6TBH_1,1KJQ_1
166
4
Newick tree
[
5ABA_1:10.43,
[
1KJQ_1:83,6TBH_1:83
]:18.43
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{769
}{\log_{20}
769}-\frac{219}{\log_{20}219})=152.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5ABA_1
6TBH_1
197
136
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]