Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1RZK_1)}(2) \setminus P_{f(8JGG_1)}(2)|=156\),
\(|P_{f(8JGG_1)}(2) \setminus P_{f(1RZK_1)}(2)|=24\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100010100100010110001100100011011000101010101101111000001100101010101111000111111110000001010110001001000011011100011101011000111000010001001110100011100011100010000100010011101000110000111010011010110001001101100000011010000010001001011001001101100110110111101010000010111100011000010011011110100010001000011010
Pair
\(Z_2\)
Length of longest common subsequence
1RZK_1,8JGG_1
180
3
1RZK_1,5FPX_1
180
3
8JGG_1,5FPX_1
112
3
Newick tree
[
1RZK_1:98.76,
[
8JGG_1:56,5FPX_1:56
]:42.76
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{373
}{\log_{20}
373}-\frac{60}{\log_{20}60})=98.4\)
Status
Protein1
Protein2
d
d1/2
Query variables
1RZK_1
8JGG_1
122
72
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]