Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4ZTY_1)}(2) \setminus P_{f(6UUQ_1)}(2)|=118\),
\(|P_{f(6UUQ_1)}(2) \setminus P_{f(4ZTY_1)}(2)|=37\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100011111011110010010010110010001111010010110101000111011100011000011001011011100000001011000111101000111011110110110000001010100000101100101100110100111000111111101111101001001011011001111010110010111100101001111101010101110110011111101110111100110110010111110111110101100100101110011100110111101001100011001011001101110001111000011001001100001100100110111001001101101100101101010101111010000000001110000101010000001110000100000101111100011011000010100001001010100000110001011101000101010101010000110011001010110001110001000101111110100111101000001101000110111011100101011010100010000111110001101000110110100111001111001000010101110010110111000001000100001001101111101011010000001011011100001001111100100101101001000100111010100111010011000010010111001101100100001001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1085
}{\log_{20}
1085}-\frac{316}{\log_{20}316})=204.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4ZTY_1
6UUQ_1
258
180.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]