Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6PTO_1)}(2) \setminus P_{f(8VOM_1)}(2)|=234\),
\(|P_{f(8VOM_1)}(2) \setminus P_{f(6PTO_1)}(2)|=8\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110110011101110011011100001011000110011000010001001000011001000000011100101011000100000011101111100001100101111110010111101000000001101000100100000101111011010101101000110010010001110000000000110011001000000010001010000110101011001000111010110111101000101101010010001000100001011010101101001111010001011010000100000100010011101010000101111010101111001100110011000110000001111000001001010001000001100100010100110000011011000000010000011000011101010010000000010000011101100101001110111011110000010100110100100000001010110110100001001110010110001011100001010001000100010011110110010011101101111001101001001111111000011111010000110100001011000100110000000000011110110100010001010000101111001110001010111000011110010010000111110001011010110000010111111100010011101001110111111001010111110001100001110000011100010010000010111011100001000110011000100010101000011111011000111011101000001001101100100001101110100010110110010010010000010
Pair
\(Z_2\)
Length of longest common subsequence
6PTO_1,8VOM_1
242
4
6PTO_1,5VBU_1
140
5
8VOM_1,5VBU_1
208
3
Newick tree
[
8VOM_1:12.84,
[
6PTO_1:70,5VBU_1:70
]:53.84
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1045
}{\log_{20}
1045}-\frac{118}{\log_{20}118})=255.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6PTO_1
8VOM_1
330
184
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]