Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4WWX_1)}(2) \setminus P_{f(1QIG_1)}(2)|=85\),
\(|P_{f(1QIG_1)}(2) \setminus P_{f(4WWX_1)}(2)|=79\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110001101000100001001010100110000110101101011111101000000100101110101011011101110100110000000100010110100110110110010011111001101011100100000111101101110010001100110010000111011101000110110000100010111011100000111010000101111100110101011010100100010110010100010001101111000000010111011110001100001010111110010111010100001100101101010101001000001010001110010000100100001100010000100100010110101110011010110001101101001101011010001010000000101010001000101011101010110011000010110011100000011001101010101110000110001001000010000110110001000001010001000110110110001011111001000100110010010100000001001100011000001001101001
Pair
\(Z_2\)
Length of longest common subsequence
4WWX_1,1QIG_1
164
4
4WWX_1,4OHO_1
134
4
1QIG_1,4OHO_1
156
4
Newick tree
[
1QIG_1:83.91,
[
4WWX_1:67,4OHO_1:67
]:16.91
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1155
}{\log_{20}
1155}-\frac{537}{\log_{20}537})=159.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4WWX_1
1QIG_1
205
194.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]