Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3CWC_1)}(2) \setminus P_{f(4XMA_1)}(2)|=40\),
\(|P_{f(4XMA_1)}(2) \setminus P_{f(3CWC_1)}(2)|=107\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00110111110000001011011011001100111010010111101101010111010110110101011110010110110101001110111101100111100011000011010110011011100111111101000111111011110100101001101111100110101011000101001011001001101001101111100110101100100110001011100101011011111111111111011011010011011001101010110101110101010000101011111101100000111111101010101100011011101100100100110010001010100111010110010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1041
}{\log_{20}
1041}-\frac{383}{\log_{20}383})=174.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3CWC_1
4XMA_1
218
170.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]