Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4JTW_1)}(2) \setminus P_{f(8QXL_1)}(2)|=75\),
\(|P_{f(8QXL_1)}(2) \setminus P_{f(4JTW_1)}(2)|=83\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:010001011110101100001110110001100001101000001010000101001011000000110010101001010110100100101100100011011001001000110010011001100000110001110001101010011001101111101110100011100110011011110001100010001011100100000111100000010001000010100010000011101001100100010111110000100010000010111000010010001010110011010000111010011110001100001111011001100001111011010001011000000101100101001001000100111011100100011001110111011011101111001101111000100110001011000101101101100101101101000011010011001001111110010001001010110011011001001101110001010111110010101111110011010001001010000000
Pair
\(Z_2\)
Length of longest common subsequence
4JTW_1,8QXL_1
158
4
4JTW_1,5JGJ_1
171
4
8QXL_1,5JGJ_1
175
4
Newick tree
[
5JGJ_1:88.86,
[
4JTW_1:79,8QXL_1:79
]:9.86
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1202
}{\log_{20}
1202}-\frac{576}{\log_{20}576})=160.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4JTW_1
8QXL_1
208
198
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]