Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4GRT_1)}(2) \setminus P_{f(5CYR_1)}(2)|=49\),
\(|P_{f(5CYR_1)}(2) \setminus P_{f(4GRT_1)}(2)|=103\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000011111101110011011011101111000011100101101100111001100011000100111000101010110000010100101100001000010110101110001010101010000110111101111001000011110111000111010011100111111011101111101110000111000011001001100000001001110110100100100010110101101111011110111010011111101100001010011100000101110010000101101110101011101111111001100110000000100001101110011110111000011000110010000001011001100000001101101000001111010111000110111111011100101000111010000011010
Pair
\(Z_2\)
Length of longest common subsequence
4GRT_1,5CYR_1
152
4
4GRT_1,1WYC_1
162
4
5CYR_1,1WYC_1
168
5
Newick tree
[
1WYC_1:84.57,
[
4GRT_1:76,5CYR_1:76
]:8.57
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1166
}{\log_{20}
1166}-\frac{461}{\log_{20}461})=183.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4GRT_1
5CYR_1
233
192
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]