Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5MSV_1)}(2) \setminus P_{f(3BIY_1)}(2)|=99\),
\(|P_{f(3BIY_1)}(2) \setminus P_{f(5MSV_1)}(2)|=44\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000000001011100110011011110101111110011100100011011001011101010011110011010001101011101110100100001100001110011001011101101110111000000010111111110011100110000101110001111111010010011001110101001111000011000001101100011011011110010011101011101111110011000101110001001010111010001101111110011001001101101110111100111011111010011000111000100110000110100111110100110000000100111101010101100010001111011011010111010101110011010110101000111110000110111000011011011010000101010111000011110000100010110001101010111011100110100000110100101111001011010011100101010000001111111010111001010110011100100110001100001100111000110100111001100101010100100101101011000110100101111001110010011111111011010101010011100101100001100110101110111011001001110100000010001011010111100101001010011010011111011011001001110100111101111111001110110111110100001101010011001011111000011001101111010010111001010011001011100111100111000111101110101101110001011001001111111010110001010010110010010101010001110111001000111110110001111000001010110010011101110111100100101011000100011110101011001111100100010110100011110011011101101100100010110010001011101000001111101110111110101100001000100101110001101001111001001001111
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1568
}{\log_{20}
1568}-\frac{380}{\log_{20}380})=303.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5MSV_1
3BIY_1
377
249.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]