Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4GNQ_1)}(2) \setminus P_{f(2FFG_1)}(2)|=228\),
\(|P_{f(2FFG_1)}(2) \setminus P_{f(4GNQ_1)}(2)|=21\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11101001101010110101001100100110101010010010100100000101110100011100100000011110010011010000111000000011110010001101100001001101011101010010111101111101110111010001011101011001100110111010110010011011110011100110010101110110000110110101100111000111011001100011110011111100101000011111101010001111010111101001100111101010101011010011111111001000101100100001100110000111010110011111101001000010100001010100010011000111011100101111011111100111111100110100111111110001111100111101111001100110110110011101101101011000001011111110000110111101010001010111011000110101110101001111000110001001000100010101100100010110001001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{701
}{\log_{20}
701}-\frac{87}{\log_{20}87})=178.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4GNQ_1
2FFG_1
233
131.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]