Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8EOK_1)}(2) \setminus P_{f(8OKN_1)}(2)|=123\),
\(|P_{f(8OKN_1)}(2) \setminus P_{f(8EOK_1)}(2)|=51\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:011001101011010000011101001010111010100111001110000011011000110101011100010000100011010101100110011110100101110000010011001100110100011111001110100101111000010000011111101011011011010101000001001100010100011101011101000100100001101010101101001010111111100100010110010011100101011100011101100101001110010101011100100110100011111001001010001001011111011111001010110011111010001001001011101010001000110101000000100100100010111000110000010101100010110010101110100100101000001110010110110010011001111110100011101011100011110100011100111010000110111001000000111100101010100110111111001111100000100001101100101100110100011110011101000010001001010010111
Pair
\(Z_2\)
Length of longest common subsequence
8EOK_1,8OKN_1
174
5
8EOK_1,8RXA_1
214
3
8OKN_1,8RXA_1
192
3
Newick tree
[
8RXA_1:10.08,
[
8EOK_1:87,8OKN_1:87
]:19.08
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{951
}{\log_{20}
951}-\frac{306}{\log_{20}306})=173.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8EOK_1
8OKN_1
220
161.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]