Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4GKU_1)}(2) \setminus P_{f(1RAY_1)}(2)|=86\),
\(|P_{f(1RAY_1)}(2) \setminus P_{f(4GKU_1)}(2)|=85\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:01001101001000111011010101001011001010001111001011101111001011000110010000001100011000010011010010011101000011011100111100101110011001001001010100111000000011111100100110101101100001101101001111110011111111100011100100111111110101001111000100101000000110111011001
Pair
\(Z_2\)
Length of longest common subsequence
4GKU_1,1RAY_1
171
4
4GKU_1,6EGW_1
152
3
1RAY_1,6EGW_1
155
4
Newick tree
[
1RAY_1:83.38,
[
4GKU_1:76,6EGW_1:76
]:7.38
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{522
}{\log_{20}
522}-\frac{259}{\log_{20}259})=74.9\)
Status
Protein1
Protein2
d
d1/2
Query variables
4GKU_1
1RAY_1
95
94
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]