Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8GOG_1)}(2) \setminus P_{f(1FXX_1)}(2)|=25\),
\(|P_{f(1FXX_1)}(2) \setminus P_{f(8GOG_1)}(2)|=182\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0011101010001100111011101110100001110100001101000011100101011110111000000100100101001111010100011100100010110001110001001
Pair
\(Z_2\)
Length of longest common subsequence
8GOG_1,1FXX_1
207
3
8GOG_1,1STS_1
8
97
1FXX_1,1STS_1
203
3
Newick tree
[
1FXX_1:11.33,
[
8GOG_1:4,1STS_1:4
]:11.33
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{603
}{\log_{20}
603}-\frac{121}{\log_{20}121})=140.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8GOG_1
1FXX_1
183
112.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]