4GEZ_1|Chains A, B, C, D, E, F, G, H, I, J, K, L|Neuraminidase|Influenza A virus (1129346)
>3MDB_1|Chains A, B|Kinesin-like protein KIF13B|Homo sapiens (9606)
>5AOJ_1|Chains A, B|CELLULAR TUMOR ANTIGEN P53|HOMO SAPIENS (9606)
Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4GEZ_1)}(2) \setminus P_{f(3MDB_1)}(2)|=166\),
\(|P_{f(3MDB_1)}(2) \setminus P_{f(4GEZ_1)}(2)|=42\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101001011001010100010010111100011111101110111000101000100010111101101000110001010001000111010010000111110000101011010111101000001111001001000101001111011000010101001111001101000100100100101001001000110100000001001100010011001001110100010001101001110011011100100011000101110111100011100000100000111100110110001010100011000001001110101011010001011101000011111100100101100110010100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{502
}{\log_{20}
502}-\frac{124}{\log_{20}124})=112.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4GEZ_1
3MDB_1
143
93.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]