Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4ENR_1)}(2) \setminus P_{f(5YQS_1)}(2)|=56\),
\(|P_{f(5YQS_1)}(2) \setminus P_{f(4ENR_1)}(2)|=55\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000001000001100000101110011100100011101011110101110101100000010010010010000110000110110000010110011011001110001001000011001101010110101010001001001011001001011110100101111010010010111001000011101110001111100100110110110101011110100100011001010100100111110001110000010111100101101010101101010111101011100100101001010000110110110110001110111000010101011010011100111100110111000100111000011101101111101000111010110000001001111010011100100100010001100111000110001001000110001111001110000001010010000101100000101111000110000110110111001101010001100110101011011100111010000101011101011000101010111010101011111100010010111110110101101011000110101001011111101111101010111110101101100101000110100010111111010010101011001001110100101011001101111001100110100111
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1518
}{\log_{20}
1518}-\frac{753}{\log_{20}753})=190.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4ENR_1
5YQS_1
244
241.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]