Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5AYO_1)}(2) \setminus P_{f(2ORL_1)}(2)|=150\),
\(|P_{f(2ORL_1)}(2) \setminus P_{f(5AYO_1)}(2)|=37\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10100110100011110110001001101111111111111010111100111011011101001011000101011011111011111111111111011101110001110111111110111101100100101100111011110010010011001011001111111111111010011111111111101101110011100110001101011001001000101010101001111111001111101101011111101000101100011110111111111001011011001111000010111011011111011111001010111101110011101100101010001110100101001001000010111101101110000100110101111111011110100001110010001010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{548
}{\log_{20}
548}-\frac{108}{\log_{20}108})=130.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5AYO_1
2ORL_1
157
97.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]