Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4EMV_1)}(2) \setminus P_{f(8XCR_1)}(2)|=51\),
\(|P_{f(8XCR_1)}(2) \setminus P_{f(4EMV_1)}(2)|=110\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000010100000011011011011000111011000111100111011001100110111001010100010101000101110110111110101110110111011011000011101110011011001101010001110000100110110010011011000010010111010110000100001000100011110010101000000011010000
Pair
\(Z_2\)
Length of longest common subsequence
4EMV_1,8XCR_1
161
4
4EMV_1,5HQL_1
169
4
8XCR_1,5HQL_1
160
4
Newick tree
[
4EMV_1:83.34,
[
8XCR_1:80,5HQL_1:80
]:3.34
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{645
}{\log_{20}
645}-\frac{226}{\log_{20}226})=118.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4EMV_1
8XCR_1
147
111.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]