Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4DJN_1)}(2) \setminus P_{f(7WWB_1)}(2)|=48\),
\(|P_{f(7WWB_1)}(2) \setminus P_{f(4DJN_1)}(2)|=137\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000000000000010000011100000011111100101101000101011010010100011010010100001100111111100111000110010001011010010110111001000100111000100100001110110011010001011101110000011001111111011110101111111000111111010001100001100011011100110010000100111011010001100111111111001110001011100111011100110100110110010101000
Pair
\(Z_2\)
Length of longest common subsequence
4DJN_1,7WWB_1
185
4
4DJN_1,6OOF_1
170
4
7WWB_1,6OOF_1
181
4
Newick tree
[
7WWB_1:93.57,
[
4DJN_1:85,6OOF_1:85
]:8.57
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{968
}{\log_{20}
968}-\frac{311}{\log_{20}311})=176.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4DJN_1
7WWB_1
224
164
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]