Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3ZUP_1)}(2) \setminus P_{f(3KLL_1)}(2)|=18\),
\(|P_{f(3KLL_1)}(2) \setminus P_{f(3ZUP_1)}(2)|=190\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111001010110001011110011001011111111101000001011110111110011110110011101101011001101111000101010010111101111010101011101011000110010100000011101001011101101111010011010011011001011101011110100101111110010011110110111011010110111101111101100110001110100011011
Pair
\(Z_2\)
Length of longest common subsequence
3ZUP_1,3KLL_1
208
4
3ZUP_1,2YDM_1
202
4
3KLL_1,2YDM_1
108
5
Newick tree
[
3ZUP_1:11.18,
[
2YDM_1:54,3KLL_1:54
]:60.18
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1298
}{\log_{20}
1298}-\frac{259}{\log_{20}259})=273.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3ZUP_1
3KLL_1
349
214.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]