Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8SVC_1)}(2) \setminus P_{f(7CCM_1)}(2)|=88\),
\(|P_{f(7CCM_1)}(2) \setminus P_{f(8SVC_1)}(2)|=60\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001110111111111101111110010110010111011001110010100111101010010101000111001011110111101110011010110101111001100011000100100101100110111010011011101010001110001000100100101110101011111000110000111011010010111101100000101101111100101011001110001010110011010110111010101100111110001011000101110010011111010010000000000
Pair
\(Z_2\)
Length of longest common subsequence
8SVC_1,7CCM_1
148
6
8SVC_1,7XPG_1
182
3
7CCM_1,7XPG_1
200
3
Newick tree
[
7XPG_1:10.79,
[
8SVC_1:74,7CCM_1:74
]:27.79
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{499
}{\log_{20}
499}-\frac{183}{\log_{20}183})=92.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
8SVC_1
7CCM_1
110
87.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]