Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3ZIK_1)}(2) \setminus P_{f(3CQV_1)}(2)|=124\),
\(|P_{f(3CQV_1)}(2) \setminus P_{f(3ZIK_1)}(2)|=59\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:001100010010011001000001011100001001000000110101011000010001100000011010101001000100110011100111100000111101001111110001110011100110100001100101000000110111001100011011111110110010100100100110001111101001000101100111100001000111001101000001101010111011001110101000011001001000111101111101100100110000100111110011100100101110111110100111111011110101100010111001000000100010011001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{577
}{\log_{20}
577}-\frac{199}{\log_{20}199})=108.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3ZIK_1
3CQV_1
136
103.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]