Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3VOY_1)}(2) \setminus P_{f(2EMV_1)}(2)|=185\),
\(|P_{f(2EMV_1)}(2) \setminus P_{f(3VOY_1)}(2)|=13\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:011101101000100100010000110110011011010101111010010100000100011101000101100111100110001000110010110100111000001001110111111001100110010010011011001110001110010100000010001111001000001101001111101010100101000010111101101110110100110101100010110001100101011101111100111111111110111110101110011001011010001101001000001
Pair
\(Z_2\)
Length of longest common subsequence
3VOY_1,2EMV_1
198
3
3VOY_1,4UXH_1
178
3
2EMV_1,4UXH_1
158
3
Newick tree
[
3VOY_1:98.66,
[
4UXH_1:79,2EMV_1:79
]:19.66
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{359
}{\log_{20}
359}-\frac{44}{\log_{20}44})=100.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3VOY_1
2EMV_1
133
74
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]