Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3VPZ_1)}(2) \setminus P_{f(1OXX_1)}(2)|=82\),
\(|P_{f(1OXX_1)}(2) \setminus P_{f(3VPZ_1)}(2)|=76\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0100010101111101110010111101101100011100000110101101001000010011010110101111111011010100111010100100110110101100111110111010000011101101000001111111011111011001000111000110101111001010111010000101010011011111010011111011010010110100110010001001010010011101110111101111111111111101000110001100100011100001011101100001111111101000000
Pair
\(Z_2\)
Length of longest common subsequence
3VPZ_1,1OXX_1
158
4
3VPZ_1,5PHP_1
183
3
1OXX_1,5PHP_1
161
4
Newick tree
[
5PHP_1:88.43,
[
3VPZ_1:79,1OXX_1:79
]:9.43
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{684
}{\log_{20}
684}-\frac{331}{\log_{20}331})=97.2\)
Status
Protein1
Protein2
d
d1/2
Query variables
3VPZ_1
1OXX_1
123
118
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]