Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6OGD_1)}(2) \setminus P_{f(7HRA_1)}(2)|=152\),
\(|P_{f(7HRA_1)}(2) \setminus P_{f(6OGD_1)}(2)|=30\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000000110000010111111101010101100100000000000110011111000110110100001100000011101111100110110011000000010000011110000000100000000110000111011001001111011001100110100110010101000100100001011010100011000101101100110101000100010100110011100011101100110001001111001011011001010101000000000111100010000111101101100011000010110101000011100010001011011001011001100001000110100000100010101010011000000101111000011000101011100010110100110110101011011000100001100111010001111011101001010101111001110100000110111110001001001001100100111101011110111100100011111001111010100001101101011001001001010010011010011011000101110011010100000010011100111100101000101011001100101111010111100110000110011110110100101010010010010111010110101111110011110110110010110010011011001110000111110110001101100111000000000110111010110111000010110111111100111110001101101110110001010000100001011011011000011001111101011110000011100100111000000101110111010010001100010100110001111010111001001100110001001001110100100011100011001010001111010010111100101000101101011000001110100000010001011010000100011000000101110111101101101101111011010011010110010010000110000110110100000101001110111111010100001
Pair
\(Z_2\)
Length of longest common subsequence
6OGD_1,7HRA_1
182
5
6OGD_1,2UUX_1
288
3
7HRA_1,2UUX_1
198
3
Newick tree
[
2UUX_1:13.65,
[
6OGD_1:91,7HRA_1:91
]:41.65
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1459
}{\log_{20}
1459}-\frac{295}{\log_{20}295})=302.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6OGD_1
7HRA_1
380
236
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]