Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3USM_1)}(2) \setminus P_{f(7RBT_1)}(2)|=82\),
\(|P_{f(7RBT_1)}(2) \setminus P_{f(3USM_1)}(2)|=90\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101000011001111111110111110110111011001111111101111111111111101111001110101001111011100011011111111111111100101001011111011111110111010010011011001100011110100111010111011111011101011101100110011011110111111111101111001010110110111010100100111111111011101011111110010010000011101101101000101111101011111111111011111011110111101111100011101111111111111110001111011111100010100001111011111101011111000100101111011111111001111111111001100100111101101000110010111111111111000110110000101110010111111110111111000000001101110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{892
}{\log_{20}
892}-\frac{373}{\log_{20}373})=139.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3USM_1
7RBT_1
170
151.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]