Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3EBA_1)}(2) \setminus P_{f(9CSG_1)}(2)|=43\),
\(|P_{f(9CSG_1)}(2) \setminus P_{f(3EBA_1)}(2)|=178\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0101100111010111010100010100010111001110110111110000100001001010101000010001010100101000110001100111111011100011010010100000000
Pair
\(Z_2\)
Length of longest common subsequence
3EBA_1,9CSG_1
221
3
3EBA_1,3ACX_1
197
3
9CSG_1,3ACX_1
168
5
Newick tree
[
3EBA_1:11.70,
[
3ACX_1:84,9CSG_1:84
]:26.70
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{709
}{\log_{20}
709}-\frac{127}{\log_{20}127})=166.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3EBA_1
9CSG_1
209
127
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]