Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3QDK_1)}(2) \setminus P_{f(9ITE_1)}(2)|=142\),
\(|P_{f(9ITE_1)}(2) \setminus P_{f(3QDK_1)}(2)|=37\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10100001110010001011110100100110010100011100011000101100111001100101100011111000110100111111010100111100010110111000001001101100011000101100110001011110011010001111011011001001000000110100111001010110000011001110000101000110110101001000010101111100111111011001110111111110101011111111001101111110010011110000010110111001111101100110011101111110011011010010001101011100010010110011111011010001110001011111001000100100111010111001110110101101001010111100001110111010000101110000111111111011110011100010011001101000010111001110001000010100011011001100101100100010011001000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{802
}{\log_{20}
802}-\frac{230}{\log_{20}230})=158.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3QDK_1
9ITE_1
199
136
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]