Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3PNO_1)}(2) \setminus P_{f(3FFT_1)}(2)|=145\),
\(|P_{f(3FFT_1)}(2) \setminus P_{f(3PNO_1)}(2)|=38\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100011001001100011111010101010001101001011111011110111010011001011011101101101100101001100110101101111110000101101001001100011010011100011100010011001110011100111111001001010101100100010011111110011111010101100010111110101110001100100010011001110100000101100001010000000011001001111100111011001011000100000011101000111100001010110101101000011110111001110110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{485
}{\log_{20}
485}-\frac{128}{\log_{20}128})=106.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3PNO_1
3FFT_1
133
88.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]