Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3IDH_1)}(2) \setminus P_{f(2GYO_1)}(2)|=106\),
\(|P_{f(2GYO_1)}(2) \setminus P_{f(3IDH_1)}(2)|=50\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000000001010110000100111010100001001100100010011010000010101110010001010011011010111001011110110100101010000010011001101010111001000100110000100001111101011100001001111010011010110100111110011000101010111110001101100000000001111110100100100100101101001010100011111001010011100001100001011001000111100110110111101100011101010001000111000110010000100001001100111010000001100100010001101001111111001000000011010111010100101010001010100101000101100001010111110111000101110
Pair
\(Z_2\)
Length of longest common subsequence
3IDH_1,2GYO_1
156
4
3IDH_1,3OYW_1
200
3
2GYO_1,3OYW_1
160
4
Newick tree
[
3OYW_1:94.36,
[
3IDH_1:78,2GYO_1:78
]:16.36
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{787
}{\log_{20}
787}-\frac{317}{\log_{20}317})=128.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3IDH_1
2GYO_1
160
133
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]