Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3KQZ_1)}(2) \setminus P_{f(1PMH_1)}(2)|=138\),
\(|P_{f(1PMH_1)}(2) \setminus P_{f(3KQZ_1)}(2)|=41\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110011011010100111000011001010100101100100110111100110001110100010000100110000100101011000010110000001111011010110100101001110110110000100101110101000110111001100010000100000010100100111010010000001001010011000100111110000011010011101100101000111100100101110101101010100110100000101000111110110100110010111101101101010101111101001101010010101101100011000000110110100100101100010101011011101001110011011010111100110001111100001100110000000011111111000010100001010010001010011101110011000111010111101010100101111011001110011000000
Pair
\(Z_2\)
Length of longest common subsequence
3KQZ_1,1PMH_1
179
3
3KQZ_1,8PZP_1
146
6
1PMH_1,8PZP_1
181
4
Newick tree
[
1PMH_1:94.99,
[
3KQZ_1:73,8PZP_1:73
]:21.99
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{713
}{\log_{20}
713}-\frac{185}{\log_{20}185})=148.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3KQZ_1
1PMH_1
186
125
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]