Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3INV_1)}(2) \setminus P_{f(6PJC_1)}(2)|=207\),
\(|P_{f(6PJC_1)}(2) \setminus P_{f(3INV_1)}(2)|=22\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10110101100110100111011011111000111101001110110010110010001010010101100011111000100111010111101011100010000110111000000101001111011100110111010001010010011110101011011010110110000101000000111011001001111101000010001001010000001001110000000010110011001010000011101011110101010000111100001110110001111101000100100011011000100111000110000010111101101001111000001000101100101110010001000011101101011101111100111010100101001100000011111110110011101111010110110110011010100001010000100110111011100000110000010101100110111010111
Pair
\(Z_2\)
Length of longest common subsequence
3INV_1,6PJC_1
229
4
3INV_1,1CYZ_1
261
3
6PJC_1,1CYZ_1
78
2
Newick tree
[
3INV_1:13.95,
[
6PJC_1:39,1CYZ_1:39
]:10.95
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{620
}{\log_{20}
620}-\frac{99}{\log_{20}99})=152.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3INV_1
6PJC_1
195
113.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]