Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4LEB_1)}(2) \setminus P_{f(3MCS_1)}(2)|=101\),
\(|P_{f(3MCS_1)}(2) \setminus P_{f(4LEB_1)}(2)|=61\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100101110010010100110000011101010111110101001011001010110110100000010101011001000101100110100100010001010101110101111101110100101000001011000101001100101010100001010101000011101001001111100101000101111000101010000101110011001001100001000000000111100001111001110101010010000100100000111010011101010100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{519
}{\log_{20}
519}-\frac{219}{\log_{20}219})=86.3\)
Status
Protein1
Protein2
d
d1/2
Query variables
4LEB_1
3MCS_1
106
91.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]