Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3INN_1)}(2) \setminus P_{f(4KGI_1)}(2)|=84\),
\(|P_{f(4KGI_1)}(2) \setminus P_{f(3INN_1)}(2)|=58\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000000110101000111010110010010011111000100111110110100101011001010001011011101101110001100100100011110010100111101001010110011011111001010101101111101100110111101101100010011110011001111101111001000011100000101010000111111011001001000110010110111001110011111011110010010011110101111111101110011000111011101000011
Pair
\(Z_2\)
Length of longest common subsequence
3INN_1,4KGI_1
142
6
3INN_1,3MCQ_1
154
5
4KGI_1,3MCQ_1
162
4
Newick tree
[
3MCQ_1:81.52,
[
3INN_1:71,4KGI_1:71
]:10.52
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{537
}{\log_{20}
537}-\frac{223}{\log_{20}223})=90.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
3INN_1
4KGI_1
107
92
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]