Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9BHC_1)}(2) \setminus P_{f(4JUS_1)}(2)|=146\),
\(|P_{f(4JUS_1)}(2) \setminus P_{f(9BHC_1)}(2)|=22\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110111100101111100000011011000001000110110111100100000101110100010001101110000100111111100101011101010100110011011101001101110100000001100010011011100001011100101101000111001100000001111110111001001110010001100000110110110011001000110110111011111110101111110111110111011111111110111101111111100110100010101001100110100011000000
Pair
\(Z_2\)
Length of longest common subsequence
9BHC_1,4JUS_1
168
4
9BHC_1,5LRU_1
180
5
4JUS_1,5LRU_1
172
3
Newick tree
[
5LRU_1:89.32,
[
9BHC_1:84,4JUS_1:84
]:5.32
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{431
}{\log_{20}
431}-\frac{104}{\log_{20}104})=99.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
9BHC_1
4JUS_1
125
80
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]