Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3IBT_1)}(2) \setminus P_{f(7FLW_1)}(2)|=103\),
\(|P_{f(7FLW_1)}(2) \setminus P_{f(3IBT_1)}(2)|=97\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100101010110000010101101111011000001100111111001011010101001000001010000110011111010110010110000101101010001111011001110111010111100110100100011100011001100000101100100011110101100100010100001101100100110010100100011000000101011110011010011100011010011111011001101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{522
}{\log_{20}
522}-\frac{258}{\log_{20}258})=75.2\)
Status
Protein1
Protein2
d
d1/2
Query variables
3IBT_1
7FLW_1
98
96
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]