Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1SQX_1)}(2) \setminus P_{f(2AGK_1)}(2)|=125\),
\(|P_{f(2AGK_1)}(2) \setminus P_{f(1SQX_1)}(2)|=54\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:01001011001100010010011011000000100011111011000000000111011001110100001101100010011101010000000100101100011011011101100001000010000011100100000010011100101011010111001011000100100101000100000110111111111000011011000101101000001110101001010010000011111011111011111010011101101111000000111101001110111000100010010100100111110110001010011111010110100010000110100110011100101001100011001100100111101000110101011001000010000111111111001100001001111101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{706
}{\log_{20}
706}-\frac{260}{\log_{20}260})=124.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1SQX_1
2AGK_1
159
125
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]