Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3HHT_1)}(2) \setminus P_{f(6JCG_1)}(2)|=98\),
\(|P_{f(6JCG_1)}(2) \setminus P_{f(3HHT_1)}(2)|=73\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101100000101011000101001101010110011100101000110011000000111101101110110011100011000001100110011010010110000010011100100001111111110100011001011001001100111011001010110000010111110010100110000110110000111110101101011
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{379
}{\log_{20}
379}-\frac{163}{\log_{20}163})=64.8\)
Status
Protein1
Protein2
d
d1/2
Query variables
3HHT_1
6JCG_1
82
73
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]