Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8WIL_1)}(2) \setminus P_{f(8ARR_1)}(2)|=155\),
\(|P_{f(8ARR_1)}(2) \setminus P_{f(8WIL_1)}(2)|=17\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10101101001100100010110000100101011110101100100100010011011001011001010110111001110101110101101100100011101110010101001011010011101100100000110000000111011011110101100111010110000110110010100001011011100100011011000100010101001100100001000100011100001010101011101011101101000110101001111100110011001100010010000011101101100110000111110100001011101100010011101000011100100111011100010100100001101100011110010000010111010010100010010011101010011000010000000100010010011001110101001011111000100011011101100010010001010111100011110001001110100011001100001100100100101010111000101010011101010100100100110010011000011110111101011011001000010001110100011110100101010010010001111000111000001110100101000001110010010011100110111010111110000100011101011011100001100011111110100111010110011110001100011100101110010001100110101000011110100000010001100100100010000110011111100010000000
Pair
\(Z_2\)
Length of longest common subsequence
8WIL_1,8ARR_1
172
4
8WIL_1,8RGA_1
124
6
8ARR_1,8RGA_1
142
5
Newick tree
[
8ARR_1:83.72,
[
8WIL_1:62,8RGA_1:62
]:21.72
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1108
}{\log_{20}
1108}-\frac{236}{\log_{20}236})=233.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8WIL_1
8ARR_1
293
184
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]