Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3CZP_1)}(2) \setminus P_{f(5FTK_1)}(2)|=50\),
\(|P_{f(5FTK_1)}(2) \setminus P_{f(3CZP_1)}(2)|=102\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10110010110010000000111010011101010100010111111101101110100101100110101101001101000010011010110011101001111101000110101010100101001101100100110001111101110100001000101100010001010110100001000110010011000000011101101100000110110111011011110000100010111110010001110010110010001000011100101111100001000011111010011101111001001101000011111110000010101101100111000101100010101110010110111011010101001000100011111011111000001001000000100000100001000001000101110110000001111011010000110101100100110110000011
Pair
\(Z_2\)
Length of longest common subsequence
3CZP_1,5FTK_1
152
4
3CZP_1,4IPC_1
187
5
5FTK_1,4IPC_1
207
3
Newick tree
[
4IPC_1:10.09,
[
3CZP_1:76,5FTK_1:76
]:29.09
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1306
}{\log_{20}
1306}-\frac{500}{\log_{20}500})=206.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3CZP_1
5FTK_1
262
210
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]