Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2EVN_1)}(2) \setminus P_{f(8OXK_1)}(2)|=75\),
\(|P_{f(8OXK_1)}(2) \setminus P_{f(2EVN_1)}(2)|=71\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100110111001000100000011100010001011011000110100111110010111100100001011100001000111001010111000110001
Pair
\(Z_2\)
Length of longest common subsequence
2EVN_1,8OXK_1
146
2
2EVN_1,5XHU_1
188
3
8OXK_1,5XHU_1
184
3
Newick tree
[
5XHU_1:98.77,
[
2EVN_1:73,8OXK_1:73
]:25.77
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{202
}{\log_{20}
202}-\frac{99}{\log_{20}99})=33.6\)
Status
Protein1
Protein2
d
d1/2
Query variables
2EVN_1
8OXK_1
45
44
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]