Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2XXW_1)}(2) \setminus P_{f(3SXY_1)}(2)|=95\),
\(|P_{f(3SXY_1)}(2) \setminus P_{f(2XXW_1)}(2)|=59\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100001110011001011100000110100010100101100100111100010110010011000101010111001100010111111110010001101001110111011000101100100110000100111001101011000010000011111000000111000001100110000111100001011000000100111110001011101110100001011110100010101100011010101010
Pair
\(Z_2\)
Length of longest common subsequence
2XXW_1,3SXY_1
154
4
2XXW_1,7BBT_1
178
3
3SXY_1,7BBT_1
140
3
Newick tree
[
2XXW_1:87.17,
[
3SXY_1:70,7BBT_1:70
]:17.17
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{479
}{\log_{20}
479}-\frac{218}{\log_{20}218})=75.6\)
Status
Protein1
Protein2
d
d1/2
Query variables
2XXW_1
3SXY_1
95
86
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]