Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5AWB_1)}(2) \setminus P_{f(7JUM_1)}(2)|=161\),
\(|P_{f(7JUM_1)}(2) \setminus P_{f(5AWB_1)}(2)|=17\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0011000100001000000000111000000100110011001001010001100100001011001001010001010000101110001101001111010010011100001101101110010010110001001000110011010010111000100100000100111001001011010100100111011001001110000100100001011101011010100100101111011001110101001110010010010100001001011110011010110101001110110111101110101101010010100100101000100110101101010110010000101110110100101110110010101100100101101000010111000000010000100010000000101010001001001110100110101101010011111100100110110101010001011010010111010010100001010010110010010110100000010111100010110010010110100001001000001000011011101001011100000001011011001001010100100110011101110100101000110110101100110101101010011110001001000100111000010011011100100100101000110010001100000001011010101100000110100110001010110110110101100010011010100010010011110
Pair
\(Z_2\)
Length of longest common subsequence
5AWB_1,7JUM_1
178
4
5AWB_1,3AAC_1
212
4
7JUM_1,3AAC_1
130
3
Newick tree
[
5AWB_1:10.59,
[
7JUM_1:65,3AAC_1:65
]:41.59
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1006
}{\log_{20}
1006}-\frac{195}{\log_{20}195})=221.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5AWB_1
7JUM_1
268
166
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]