Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2XIS_1)}(2) \setminus P_{f(1DYW_1)}(2)|=131\),
\(|P_{f(1DYW_1)}(2) \setminus P_{f(2XIS_1)}(2)|=46\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:000101000101111011101001110100011011001001101110110100001111100000000010010011000110111100011001110011101000010001100010010111011100011111001100111001001100100110111001000100101110101001010111101101111100100101011010110001111011011101111101101010100110000010111101011111101100110011001010110000101111011101000111000111101010100110100100110101101101110000110010101111011110010011100111101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{560
}{\log_{20}
560}-\frac{173}{\log_{20}173})=111.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2XIS_1
1DYW_1
136
98.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]