Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8DIL_1)}(2) \setminus P_{f(1TNJ_1)}(2)|=84\),
\(|P_{f(1TNJ_1)}(2) \setminus P_{f(8DIL_1)}(2)|=93\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101101110000100110111110010011011101100001011011110101000101110011111110001100100111011111011100000001111000101101111101111101101110011100011100110001000111110110101010001001010111001
Pair
\(Z_2\)
Length of longest common subsequence
8DIL_1,1TNJ_1
177
5
8DIL_1,7ZQQ_1
142
3
1TNJ_1,7ZQQ_1
173
3
Newick tree
[
1TNJ_1:92.35,
[
8DIL_1:71,7ZQQ_1:71
]:21.35
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{412
}{\log_{20}
412}-\frac{183}{\log_{20}183})=67.8\)
Status
Protein1
Protein2
d
d1/2
Query variables
8DIL_1
1TNJ_1
87
79.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]