Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2XAX_1)}(2) \setminus P_{f(1HYJ_1)}(2)|=250\),
\(|P_{f(1HYJ_1)}(2) \setminus P_{f(2XAX_1)}(2)|=16\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10001110000100001010010011011101100101001010001010011000010001101110110001100001110111101000101010111100011011011000001100000001001001100000101001110010100110001010100010110111110110001000010010010011001010110111011001000100011100100100101000111001000111110110101110110110110010111000100110000011101111011011101010011110000110100100100110100110001101001011010011110011110000100100000000010000101101101110001001010100100000001101111110000101011110011001000010111001011011110010010011111101101110000011111001111000111111011001100100000101001000010110001101000110001101110000010111110000001001100110001011000100011000010111100000010010011011010101010001110011100001001001110111001010111110011000101000001001101011100110011010011100101000001100100011101000100011001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{826
}{\log_{20}
826}-\frac{65}{\log_{20}65})=218.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2XAX_1
1HYJ_1
279
151
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]