Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5KDU_1)}(2) \setminus P_{f(8BCU_1)}(2)|=170\),
\(|P_{f(8BCU_1)}(2) \setminus P_{f(5KDU_1)}(2)|=35\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000000000011110100110110101010010010000110100101011010110010101011010101011000010001110010101100010110100000111001101101110000000000110101011000111111000000110010101001010100010111100000101101001101000000010001001000110111111100000100010101111100101111101101111101100011111001111100110010011001101000111111000000000100001100000101110000000100010000110111110101000010101000100001100000010001111100110101001110011010001000110010100010010011100010110001010100010010101010100000001110010001001110000011000001000110110100001001011010
Pair
\(Z_2\)
Length of longest common subsequence
5KDU_1,8BCU_1
205
4
5KDU_1,1TRB_1
166
4
8BCU_1,1TRB_1
173
3
Newick tree
[
8BCU_1:98.46,
[
5KDU_1:83,1TRB_1:83
]:15.46
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{691
}{\log_{20}
691}-\frac{161}{\log_{20}161})=150.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5KDU_1
8BCU_1
193
126
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]