Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2UUW_1)}(2) \setminus P_{f(8EBU_1)}(2)|=36\),
\(|P_{f(8EBU_1)}(2) \setminus P_{f(2UUW_1)}(2)|=96\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00101011111001101111101000000111100011000111111010000010000111011010001011111011001100100010011100001110000100110000001111011010010000000011110010011001001111001001110001011000011000111100110011101110111001011011011111101001010110001011110010000100000111011011110011010111001101100110101001011001111011110011001001101111110100000110010110100100011101001011010110011101000110101100001101000111100010001011011101001000101101000001001111000100101001110100011111001001110010101111100000011100011111101101110001000111010
Pair
\(Z_2\)
Length of longest common subsequence
2UUW_1,8EBU_1
132
5
2UUW_1,1ZEH_1
247
4
8EBU_1,1ZEH_1
305
3
Newick tree
[
1ZEH_1:15.62,
[
2UUW_1:66,8EBU_1:66
]:89.62
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1297
}{\log_{20}
1297}-\frac{515}{\log_{20}515})=200.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2UUW_1
8EBU_1
258
210
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]